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Introduction

In recent yearsa renewal theory has become one of the most power-
ful tools of the applied probabilist. In partlicular, it plays a
prominent role in the analysis of the behavior of type I and type II
particle counters,

There is en Integral formula (due to R. Pyke) for the distribution of
the time betweecn succtessive reglistrations with a Type I counter under the
assumptlions that the particles errive according to a general recurrent
process and that the counter hes a random dead time. Unfortunataly there
13 no such simple formula in the case of the Type II counter., In chapter
I, I give a resume of the renewsl theoretlc approach to particle counting
problems and a shorter proof of Pyke's formula,

The physical literature has been mainly concerned with the case
of Polsson-arrivals, The nssd for consldering general recurrent input is
genulne , however, because scallng circuits and other devices used by
physicists destroy the Polssonian nature of the input (arrival) process,
For instance, if we count every r-th arrival in a Poisson process we
actually have en Erlanger Input process (i.e., the time between successive
arrivals has an Erlang-r distribution).

In his investigatlons of telephone traffic and Type II particle
counters Professor L, Takfcs discussed both the distribution of M(t) =
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the number of registered particles at time t and of 1(t) = the number

of impulses present in the machine at time t . He formulated a recurrence
system of integral equat.ons for the binomial moments of the distribution
of A7(t) and solved them in the cace where the dead time (impulse tinme)
produced by each particle 1s exponentially distributed and the input 1s
recurrent. Although the random variable »(t) 1s of primary concern in
particle counﬁing, Qﬂt) 1s the essential random variable in the theory

of infinltely many server queuelng systems as 7(t) is precisely the size
of the queue at time t.

" At the suggestion of Profesusor L, Takfcs, I attempted to utilize his
methods to solve the more realistic problem where the dead time is allowed
to have Erlang-r distribution r > 1, rather than the exponential. Unfor-
tunately, the equations become quite involved and I succeeded in determining
only the Laplace transforms of the number of impulses present in the counter
at time ¢ for Erlang-2 dead times., Luckily, I discovered another class
of distributions which are more tractable with respect to these problems,
even though they are not sasily handled. The distributions I use are
"max~ m" distributions, the maximum of m exponential distributions each
with parameter p .

After determining the number of Impulses present in the type II counter
(the queue size problem) T turn to the mailn problem of particle counting,
the behavior of p(t). Here is where the "max-m" distributions make the
problem manageable. In order to obtain the mean time between consecutive
registrations consider tho following bulk-queueing problem: Suppose that
the particles arrive in batches of slze m, each particle independently
produces an impulse whose lepgth 1s exponentlially distributed with parameter

B « Thenlf we allow the 2 astochastlc processes:
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1) Recurrent input; max-m impulse time and

2) Recurrent input; batch arrivals of size m with each particle producing
an exponentially distributed impulse to occur simultaneously we see that the
counter is free at the sams time in both processes. Thus if wse let 8(t) =
the number of impulses present at time t in the second process, in

general O6(t) # '7(t) but at any time t when z(t) =0 8(t) also will
agual O and conversely.

In chapter li, I determine the binomial moments of the ergodic distri-
bution of the imbedded Markov Chain for the batch arrival problem. Using
the limiting distribution of this chaln and Wald's Fundamental Identity of
Sequential Analysis we can detsrmine the mean time % between successive
reglstrations with max-m dead time. By the elementary renewal theorem the

number of "counts"™ at time t 1s asymptotically equal to q%- °

Chapter 5 is concerned with two attempts to obtain formulas for the
variance of the time between consecutive registrations, I was unable to
obtain a formula in the case of general inter-arrival times, but I give an
approximate result for Erlang.r inter-arrival distributions if r 1is large.

My final chapter 1s devoted to a modifiled version of a problem
discussed by Professor W.M. Hirsch concerning the application of queueing
theory to missile defense systems. I treat the problem of attacking a
well fortified base (one with infinitcly many missile batteries). Because
of the simplicity of the model assumed we were able to introduce and calcue
late explicitly a loss function which yields a reasonable criteris for
evaluating the effectiveness of certain attack and defense stratepgles. It
1s hoped that this type of loss function will be "calculable” in more

complex situations,
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Chapter I Basic Renewal theory and the Type I Counter

The well kmown Polisson process is a model for an integer valued
random process {§(t) ; t > 03 which counts the number of random events
occurring in the time interval (O,ﬁ] . Usually the events are represented
by the times 73, 1&, +ee Of their occurrence. The random variables
8, = T&, 9, = 1% Ty s eee s, O, =T -7 ., ... are called the
successive inter-arrivel times. More generally if the time differences
are assumed to be identically distributed positlive random variables with
a cormmon distribution function F(x) , and if we denote by Et the
number of events which occur in the time interval (O,ﬁ] , then we say

that {en, t} forms a recurrent (or renewal) process,

Notation: 1) P[e,

iA

x] = F(x)

00
2) E(8) = « =‘fo xdF(x)

3) v(e) =&2 = j': (x-<)2 dF(x)

L) #ls) j;e'sxdF(x)

Definition: The renewal function (or mean value function) of the renewal

process 1s defined by

n(t) = B[§(¢)] = :26 nP(& =nJ .

Thus m(t) is the expected number of events occurring in the interval
(0,t]

The role of the renewal function, both in theory 2nd practice, can
hardly be overatressed. According to W.L. Smith [Rer. 1 page 2h6J
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"eee in most applications of renewal theory s knowledpge of the renewal
function m(t) or even a knowledge of its asymptotic behavior for large
values of t, answers most of the questions we are likely to ask.,"

In fact knowing m(t) we can determine F(x) from
0o
-t - (s)
5) J‘O e "dm(t) = I%,m-

The most basic results of renewal theory will now be stated,

Theorem 1 (Elementary Renewal Theorem)

6) 1im ﬂé—‘l’- = X where « = E(8) < o
t=> 00

and the limit /<. ig interpreted as 0 if « = oo .

Theorem 2: If d4° (t) denotes the varlance of €t ard 1f &2

then

2 2
7) 1lim s"l_é.ilu <,
t=~> oo oL

=V(0) < oo

Theorem 3 (Asymptenac Normality)

If 62 < co then for all real x

&
8) lim P Sy = 3 *, Zau

e o S B — i

Theorem li (Blackwell's theorem)
Ir t‘he' inter-arrival time € 13 not a lattice random variable and

« = E(8) < 00 then for any h > 0

t=> 0o *
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Theorém 5 (W.L. Smith) If g(u) has bounded variation in the interval
[0, ) and P(x) is not a lattice distribution and its mean « < oo,

then we have

t 1 ®
Um § gle-wldmu) = 5 [ el )au
t=»00"0 0
We now describe the renewal theoretic approach to the problems of
particle counting. Assume that particles arrive at a counter at times
”ﬁa = 0 <T'l <"G’2 <'C'3 < wes <1:'n < ,eo Where the en ="L"n - ‘t’n__l are
independent, identically distributed positive random variables. Since
most counters have a positive "resolving time" not all the particles that

arrive are counted. Let the subsequence of {T 3} denoting the arrival

[] $
times of the particles actually reglstered be O = TO' < T'l < "l'.'2 €aoe

Again the Sn' = "l.'n' - .cnil the times between successive registrations are
identically distributed positive random variables, Therefore the primary
renewal process {en ,Et} generates a secondary renewal process {env . 1:;3
where "'t = the number of particles counted in time (0,1:]., We denote
by R(x) the probability Pfe ' <=z .

In order to ascertain the asymptotic behavior of the number of rscorded
particles &(t), it suffices to determine the common mean m and variance

2

0% of the distribution function R(x). Once wo know these values, then,

by the basic renewal theorems given earlier,

2
14m Egyét)) - % 11m VerP(e)1 _23_
m

£~ 00 t~>00 t

The mechanism of the counter used determines how the subsequence

{'t‘n'} of "recorded events" is selected from the primary sequence of events



{.T{,‘} We say that the counter is free at time t, if it is in condition
to register a particle arriving at that time, otherwise the counter is
said to be locked. The two standard counter mechanism are the type I
and type II counters. In a type I counter, if a particle arrives when
the counter 1s free then the counter is locked for a random tizheZ callad
the dead time or holding time or impulse time of the counter., Particles
arriving during the time X sare not counted and have no effect on the
counter's operation. The type II counter differs from the type I counter
in that every arriving particle locks the counter for a rendom loclking
time X . Therefore a particle now is registered if and only if at the
time of its arrival all the dead timss produced by the previous arrivals
have expired, With a type I counter a particle 1s registeresd 1f~a*‘; the
time of its arrivals all the dead time produced by the previous reglstered
particles have expired. It i3 assumed, of course, thet the dead times
produced by the arriving particles (typelII counter) or by the registered
particles (type I counter) are identically distributed independent random
variables,

When the particles arrive according to a Poisson procees, i.e.,
F(x) = P[@n <x] =1- o™  the following results are known, (see Tskacsa

(5] and smith [L]).

2
For a type I counter m = }_12)\\.&121_ 2= 1 -:-,; V(%)

where X 1s the dead time random variable P (< x] = H(x)

) 2
11 EDE)] +>\ tlim v[‘gt(t)lg )‘1::\ V§12

> 00 =Y 00

Thus

For a type II counter: 1 oAE[X]
m=



L) "fd

AE 2E
el = QJ;E—E.EI- iQJ‘P[AE?J-'B(Y)dY']-J at + 28 #ﬁ 1

In order to present our shorter proof of Pyke's and Maloquist's
formulas for the type I counter we must give one more definitlon.
Definition: If we have the first reglstration at , = 0, an evant of the

pr.mary sequence is registerable 1f it arrives after the dead time Zo

produced by the first particle,
Theorem 6 (Pyke's Formulg): If Pr"l;l “G1 = x] = F(x) and the 8 ={T gt

are mutually independent and 1f the deuad times Zn produced by the n-th
particle (if it 1s registered) are distributei as H(x) and the f_ﬂ-n} ave
mutually independent and also are independent of the sequence {'\;1} °

1) ! 1
Then 6, = Tn - Y,.; has the distribution

Ple. ' <z] = R(z) = JZ H(u=) 1 = F(z-u)] dm(u)
where

20
n(x) = ‘I%I Fn(x) o

Proof: Clearly we can assume that there 1s a registration at time O
1.6, Ty=7' =0. Then
R(z)

1]

P[there 13 & registration in (0,z)]

P[there is a registerable event in (0,z])

P[the last event in (0,z] 1s :registerable]
® |
) = n‘%l' f) H(u-){1 - F’(z-u)} dF'n(u).

(1) =jz H(u-) 1 « F(z-u)] aM(un).
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The reasoning is as follows: the probability that the n-th event 1_3
the last one occuring in (O,z:l and is registerable 1s by the total pro-
bability theorem j:) H(ue) @ = P(z-u)] dF,_(u) (because the n-th event
ocours at time u, O<usx). As the last event in (0,z] can be the n-th
for n=0,1,2, ... again by the total probability theorem we obtain that

o0 2z
R(z) = z fo H(ue) L2 © Plz-ul aF, (v)
n=
= f: H(ue) [} - F(z~u)]aM(u)

Theorem 7, (Malmquist's Fom_u_],_a).. Under the same general assumptions of

Pyke's theorem, except that now we asaume that the counter 1s locked for

& constant time 3 when it reglsters a particle, we have

(3) R(z) ={0 =z <d a
F(z) -~ F(d) +j’o {F’(z-x) - P(d-x)}aM(x) .

Proof:
R(z) = P[there is a registerabls event in (0,z])

= P[there is a firat reglsterable event in (0,z)]
Here ths first registerable event is the first one to arrive after time
d . The first arrival 1s the first registerable if it arrives in (d,z].
The probability of this is just F(z) « F(d)., If n > 2, the n-th particle
is the first registeré.ble if the (n-l)-st partiele arrives at time x ,
x < 4 and the n~th arrives between 4 and z , By the total probabllity
theorem the probability that the n-th (n > 2) is first registerable is
therefore

d
fo {Flz-x) - Pla-xRer,_, (x)
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Applying the total probability theorem again (on n) we obtain

o 4
R(z) = P(z) - F(a) +':Z; j; {P(z-x) - P(a-x)}aP, _, (x)
n=

d
= F(z) - F(d) +J(')f.1"(t-x) - F(a-x)} aM(x) .
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Chapter II 0/22/ oo

Introduction:
Consider a type II counter. The particles arrive at the instants
‘T.'l, 't’2
positive random variables with distribution function F(x). Let

s aes Where i‘t’n - 'l;‘_l'& n=1,2,... ars identically distributed

1) P(s) = jq:e"sxdF(x)

2) o

[+, 23
j‘oxdF (x)

(o <]
) 2 24F (x)
3 6 J'o(x-&) x

We shall assume that F(x) 1s not a lattice distribution and that
4« < 00 , Recall that in a type II counter every arriving particle
produces an impulse but only those particles arriving when the counter is
free will be registered, Lest ’x'n denote the impulsa time or dead time
produced by the n-th arriving particle. We suppose that the {43 n =1,2,...
are identically distrlibuted mutually independent positive random variables
which are also iIndependent of {'t'n§ o In the present chapter we suppose
that the 'Ln have an Erlang-2 distribution,

4) H(x) =P {X < xJ =1 - ™™ —uxe”¥

and we shall derive a formula for ths Laplace transform of the r-th
binomial momont of the number of impulses present in the counter at time t .
This random variable will be called 7(1;) o Although theoretically we

can invert the binomial moments and obtain the exact distribution ofot(t)
the formulas obtained are too complicated for practical use in this

manner,



The random variable 7(1:) is not very interesting from the point
of view of particle counting but 1s the object of main interest in the
theory of infinitely many server queueing systems since 'z(t) 1s now
the queue size of the system G/EZ/ ® .

Notation: P (%) = P["l('c) = k]
The r-th binomiasl moment cf »;L(t) is pgiven by
o)
el A
B {t) = >3 () ()
By Jordanis inversion formula

&

Pe(t) = 2o (+1)77 (T) B, (8)

B,(s) = j: o3t B, (t) Re(s) > O

is the Laplace transform of the r~th binomial moment of q(t)o

o
= j"’o xdH(x) = J’ (1 - H(x)]ax will always be
0 0

assumed to exist and be finite for all dead time distributiomsused in

this paper,

§ 2. A Review of the Results of Takics
In this section we shall assume that 41(0) = 0 and P["ﬁl <x] = F(x).

Consider the generating function

Lo x
{(2.1) G(t,z) = %5 Pk(t) zo .

Theorem 1l: The generating function G(t,z) satisfies the following
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integral equation:

£
2.2, G(t,2) = T - Fe)] +f G(t-x,2){z + (1-2) H(t-u}} aP(x)

Proof:

By the theorem of total probability

t
Py(t) =1 ~ F(t) +Io H(tex) Py(t-x) aF(x)

since we have no impulses present in the machine if either there is no
arrival up to time t (the probebility of this event is 1 - F(t)) or
there 13 a first particle arriving at x, 0 <x <t ; the impulse it
produces expires by time t (the probability of this is just H(t-x)) and
the process "renewed" at x has no impulses present at time ¢ [?o(t-xi] o
Similarly we obtain for k = 1,2, ...

t
(2.4) Py (%) ==J'O{Pk(t-x) B(t-x) + Py 4 (t=x) [i - H(t-x)]}aF(x)

Multiplying the equations (2.4} by z¥ and adding over k = 0,1,2, ...
we obtain (2.2) as desired.

Theorem 2. The binomial moments Br(t) exist for all ¢t and can be determined

from the followlng recurrence formulas:

£
(2.5)  B,(t) =jo B,_q (t=x) 1 « B(t=x)] am(x) P=1,2, ..

00
where m(x) = Fn(x) and En(x) denotes the n-th - fold convolution of
n=1

F(x) with itself, Further
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(2.6) P (t) = % (-1)™K (T) B, (t)
re

r
Proof: Clearly B_(t) = % [ &-2{t.3) 7 r=0,1,2, ...
T r} azT z =1

Since Bo(t) =1 upon differentiating equation (2.2) r times with

respect to 2z and evaluating at 2z =1 we obtaln

C &
B,(t) = [ B (t-x) dP(x) + ‘fo B, (t=x) 1 = H(t-x]l aF (x)

0

This a linear integral equation of the Volterra type for the unknown
B,(t). The solution is well known (1t 1s obtainable by taking Laplace

transforms) to be

9
B,(6) = jo B,_, (t-x) (1 - H(t-x)] dm(x) .

To prove (2.6) we must show that the generating function G(t,z) is
r
analytic at z =1, It suffices to show that B (t) < %T for some

constant C. By (2.5) we can write

B,(t) = f J g B~ HG,5)] woo L« H(etl)] dmlty)oooam(s ]

CRLCRIRLY

Let h be a fixed positive numbar and let k(x) = H(x=h) . Since
n(t+h) = m(t) < 1 + m(h) for all t >0 we
easlly obtain

B,(t) _<_(;L_+%g_g)_)r &1’:,:\]:*‘&5“‘;1 - k(xy)] eeo I = klx;)]dx) ... ax, .



-
t+h
- (lm(h))r i'fg [ - x(x)] axi’
ri

:,Lf-g-g}-)-]r -h-;“-?lr where = j.’:xdﬂ(x) < o0

thus setting € = 1—"%93-)- .(h+P) we have proved that

G(t,z) is anelytic at z =1 and thus it Is permissible to invert
o0
B_{t) = ‘E_ (1;) ?p(t) and ve obtain

00
Pe(t) = =- (-1)"k (F) B.(v),

Before proceeding to discuss the limiting behevior we review some
results from the theory of' functions of bounded variation.
Lemma 1: The product of two functions each of which ic of bounded variation
is alse of bounded variation,
Lommn 2: The integral of a function of bounded variation on a finite interval

[_'a\-,b 1s also of bounded variation on that interval,

©
Theorem 3: If J = xdi(x) < o0 , « =j‘ xdF{x} and PF(x) 1s not a
Q 0

lattice distributlon then the 1limiting distridvution

tis’me P('Pt(t) = k] = Pk* k=0,1,2, .. oxists

and is independent of the initial distribution and we have

% 2

. r-k T %
(207) Pk & r2=E (“1) (k) Br

where Br* is the r-th binomial momentoi{?k*} and can be determined 1in
the following way:
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2.8) BO* =1 and B = 7 fo B,1(8)[1 - H()] as

Proof':
Pirst we shall prove the theorem in the particular case that '2(0) =0,
As By(t) =1 clearly Bo* =1 and by (2.5) we have

6
By (t) = fo [ - a(t=x)] an(x)

As 1 - H(x) 1s monotone non-incrsasing we may apply Smith's theorem

to deduce that Bl'n' exists and equals
B*= 1 f: B - ")) at = 4.

By lemma 1 Bl(t) i1s of bounded variation on every finite interwval and
as the limit Bl* exists Bl(t) is bounded on the entire line, We can
show (2,8) by induction, If we assume that

1im

1 () = Brfl exists, then by Smith's theorem
t—>

Bru

t
applied to Br(t) = jo Br..l(t'x)[l - H{t~x)] dam{x)

Wwe can conclude that

1lim Brit) = Br* exists and is given by (2.8) ,
t=->» o

st B*s) < &e  for t> 0
nce r = -z:r or >

(2,9) 1lim G(t,z) = 6¥(t) exists and we have
t-» oo
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(200  a*(z) = B *(z-1)" .

M

The series (2,10) is convergent for all z. By (2,8) we see that

(2.11)  o%(z) =1 - {252 f: 6lt,2) (I - H(E)] db.

Now G*(l) = 1 and eccording to the contiiaulty theorem for generating

functions 1t follows that the 1imiting probabilities
‘b}-;ni” PE)l(t) = k] = Pk* k =0,1,2,5.,

exist and that

Finally from (2.10)

Pk%— %1’ a%® (2)

dz

©
= 3 (o1)Tk Ty p #
P A

and thus the B_~

L (2 =0,1,2, ..0)
are indeed, the binomial moments of the distribution {P."f . This
completes the proof for the inltial state 0. If we consider an arbitrary
initial state then the only difference 1s that 'It(t) 1s replaced by
ﬁ'(t-'vl) + €(t) where Ty 4s the random arrival time of the first new
customer, /Tt(t) has the same distribution as our nl(t) and

ti;m PlE(t) = Q] =1 . (€(t) 1= the number of the original customer
oo

0o
remaining in the queue at time t. Cleurly J xdH(z) < oo implies that
€(t) 0 as t =>o) . Consequently, 41(1:-1:'1) + €(t) has the same
asymptotie distridbution as the special case 2(0) = 0 that we considered,

Thus the proof of the main theorem is now complete.
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§ 3. he Lxplicit Solusion in an Uperational Form

The fundamental recurrence betwsen Br(t) and Br_l(t) is

t
B,(t) = j’o B,.p(t=x) [ = H(t-x)] am(x) .

When H(x) 1is Erlang-2 this becomes

t
(3.1) B, (t) = j; B, 4 (t-x) [@'“(t"X) + plt=x) e~u(t-sz dm(x)

Upon taking Laplacs transorma we obtain the recurrence equation for the

corresponding transforms:

(3.2) Bue) = fB B o) - w By ()]

Az the writs Zn which we measure tims are completely arbitrary we
may assume that p =1 without loss of gensrality. In order to make the

discussion as simpie e3 possible we inLroducs the following notations and

afs) = Iggr;.,

B: shifts v -dr + 1 B8 31(3) = Eﬁo(s) 3 Br(s) = EPBO(s)

operations,

Fs shifts “be avrgument 3 «> 8 + ) e.z. Fd(s) = d(s+1l) F¥a(s) = a(s+k)
Ds is the differasntiation operator,

It %3 Importent to note that whille D,E and F commute with esch other ,
they do not commute with functions of 3, Our equation (3.2) now becomes

the operational ecuation:

(3,2 E" Bols) = a1 -p)FE"-1 Bols) givan B,(a) = Ys .
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Theorem 2.1

- ®

2
(3.3) E' =37 clay,e.., ar)dD‘leD“zF d...p T-lpF-lg(1.p) TF

Teo, : -1 ,
whero ?:.. by pel  [d - %1’ a;
(3.4)  clay,eeaa) = )7 T -
. & = a

3

Befora glving the proof we give some przliminary explanation. Te
£4rd EX 1/3) = ﬂl,(s) we nust Firat snumercte all the »etunles (al o dp)
r
such that 1) a, 2% 2) 2" e, <j for J<v -1 3) ?’: 8, =1
¥ i=L = !

For oach ne~tupie consider

1

el 5 & - aZ Y . af?’“l ’ - £ ﬂl‘ ¢ 3
(30.9) 0(-"315'”«,3 4 od(S) D d(:5+-5-1 D &(3"'2) o9 9 u d.3+(r'.L))\l'=L'; dﬁ@*"r)

r

where c(2. 0.0 ,aw) iz a cornatant deperding zn the arrangemsnit choson ~nd
(1-0)® 41 to be expanded ir. the binowmigl Sormula. F%r(SJ is squal 4o the

3um of exnreass.ons cof the form of (3,5) »

It 47 inturesting bto icentily the combiratcrial meanlng oX the terms
in the product of the coefficient c(a,l ,oao,g.r) » For chooi3ing 84 We
are given one ball j we can take 1t (ftake 1) or leave 1t (take O Yor
choosing a, e ar: given a new hall; 1f a; = 0 we choose iy balls
fronm two halls 1.a. 8, = 0,1, or 2 while if 8 = 1 a, = 0 or 1.
Similarly, we choosas aJ balls i'rom J balls minus the number of balls
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(we omitted the operations since the a's in the c-term determine the
corresponding operation), By inverting the above aystem and remembering

that ‘1 = ) or 0 we see that

(3.6) e(1, Bpsesey By g a) = - c(aé,..., 8,17 a)
while

(3.7) eclO, 8oy ovos By &) = + c(ag, Bapeeos By 3 a-l)

0(8.2-1, 33, co0y 8-)

c(aa, 8.3‘1, ah‘,oco, a)

§ e0o

c(aa’ a3, ®c oy ar.'z’ %-1‘1, a)

Notice that if &y =2 c(aa, a3-1,...) will be zero as (é) = 0 and
in general (E) = 0 if k >n, With this convention it las easy to see that
(3,6) holds i.e.

3(1, aagoov,ar-lg a) z - 0(8»2,9.0’ ar-l’ ﬂ.-l) since
r=2

- r -2 Q; r-1
(= 1)Z "t )(2 :i) ( a 1§ ) = (-1)iZ a,+1}
Pw

.

-f{same product!

To see that (3,7) holds for our formula we use the elementary relation

n nel Nel
(&)=(g) *+ (L3) -« Thus:



r-l po2
§=; ! 3-mp-my (heagmay ey (T £y ‘{>
= (- 1) ( ia)( a22 ) ( 5 )... .

2 1 1l
as ( 9‘2) = ( a2) + (8_2“1) this becomes

r=l
G CTETCTE ey L (R
r-1

: 1 3-8, a8, )-|-"‘-3'32=8. C“’lﬂ?_-;ai
+(9‘2\( 132 )( -

ah a

Again use (3.‘:2-&1) g(z;af;al). +(2 “aaZ-al)

3 3 3
and our expression becomes
b ol r-1
B (00 2ty L (")
r=1 re-l

B 0 G I GRS R VI G =20

85 8.3 -1 ah 8,y



w2l

-1
(= 1) ay

& pal

gq(l)(z-azaal)(h-a3-a2-a1) ."(1'-1-% "1)
%2 %3 4

Proceeding in this way (i.e., decompse o, term next etc,) we obtailn

ﬁ a, 1 ‘3-&2-&]7 (h- % a? 3 .(:--1;?; 39

timaa( ay-1 \ aq

()T Q f“ﬁ - ?—T)

C(alpooo ,ar_l,a) = (" 1)

ol

ey E Y ELORY
i <: 2\ (z-zg-al) .“(r-‘;\-é) (r-l-al:l 19

This last line in the above system becomes

¢y oz ﬁNz)

) 8h.q -1



Hence )
e(O, lzgooc; &1.-1= a) = - c(‘a -1, 33' eesy R

c(aa, 8, - 1,000, )

- c(lz, 3.3, see y %.1 - 1’ l.)

0(8.2, 9.3,..a, ﬂ.r_l, 8 e 1)

as desired and we've shown that the c¢'s fit the relations (3,6) and (3.7)
thus if (3.3) holds for Er"l, it holds for E',, Therefore, as (3.3) is
correct for r = 1,2, by the induction hypothesis E¥ 13 given by (3.3)

for all » .

k. The Limiting Distribution of 4z(t) .
By standard Tavberian theory (see e.g. Doetsch [5]) if 1im B, (t)
t=> 00

exists then 1lim Br(t) = 1lim sf,(s) . Since we now €2) that
t-> oo 850

B, = til.;x:o B,(t) exists and that {B,f for » =0,1,2, ... are the
binomial moments of the limiting distribution P, * = 1im P[7(t) = k)]
k¢

k=0,1,2, ... we can apply the Tauberian theorem referred to, We now

compute Bl* , BZ* and 33* °
Lerma 1: 1lim s@ls = -}7 where « = f xdF(x) < o
8 =0 -8 0

Proof: s = Ll =48+0 s2)
~€s) <8 + 0(s)
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11 2f(s
g>0 T8

i

The firat three binomlial moments of the l1imiting distribution are
1) B =%

Proof': lim sBl(s) 1im sf ss . 332 =§
80 8-> 0 (s+1)

D 5,015 SR -3 (%1 Wk

Proof: B,(s) = aPa(1-D)?F2(1/g) - apra(1-DIF? Ys

B,(s) = I%tl)' 1—%—‘-;5 L - 20 + D7) rﬂa)-,l 7' (s+1)[1-D]—-z
- S5 - o G e T 8- fne R e o (s+2)?

therefore

Ma sBp(s) = [ErfH--2 o' e .



Similarly it can be shown that

Donteipll . L8 . % -6% e 5B ¥

v oo (G ' () @]
vt [y ' (%) @ + SR . () ® @3

In the speclal case of Poisson arrivals ¢(a) = A/A-O-s and we obtain

2 _ (203
B," = 2) B, = 2\ 133*- '('STL

§ which agree with earllier results of Takédes who showed that

———

) k
“pk* = ;}mm Pk(t) = e"'\’ %)— where P = mean impulse time = 2

if the locking time has an Erlang-2 distribution. Since the binomial
r
moments of the Poisson dlastribution of density V are glven by B, = Yo/,

our formulas coincide with those of Takacs.
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Chapter III G/max~m/ 0o

1 Introduction

In this chapter we again determine the Laplace transforms of the
binomial moments of 1(1:) = the number of impulses present in the counter
at time t = the queue size of the quousing system 0/max-m/co . Thus
we suppose that particles arrive at a type II counter according to a

recurrent process where the inter-arrival times {% = ¥, .3 n = 1,2,...

are independent positive, non-lattice random variables.

< x]

Let F(x) =P[r, -« T,
oL = ijdF(x) < Qo

= -sxdp( )

(=) ?: e x

Finally we assume that the locking time ﬁh produced by the n~th particle
1s the maximm of m Independent identically distributed exponential random

variables i.e.,
= “ix om S I (my g=ux]
B(x) = Px <x] = 1 - e™] =ﬁ(»1) (3)e

It will be seen that the recurrence equations for the Laplace transforms
of the binomial moments will be easier to solve for the general maxem
distribution than for the case of Erlang-2 dead time dlstribution dealt
with In the previous chapter,



v2

LR

2. The Transient Behavior of 1(t)

In 1958 [)] Professor L. Takdcs derived the following recurrence

equations for the r-th binomial moment at time ¢,

3
(2.1)  B,(¢) ==j; Bpft = %) [1 « H(tex)] dm(x)

where H(x) is the dead.time distribution. In our situation the equation

to be 30lved bhecomas

¥ B -1 - (=x)
@.2) B0 = [[By (ex) {1 DI (P R anx)

Q0

Letting Bp(s) = J o8t Br(t) dt be the Laplace trensform of Br(t)
0

we obtaln from (2,2) the equation

(2.3) Bp(s) = pERls i% (« I (B g (argul}

for the Laplace transiform of the r-th binomial moment., It is to be
noticed that no derivative appears in (2.3) 1in contrast to equation (3,.2)
of Chapter Il and thus we have a pure m-th order difference equation to
solve. As B,(t) =1 for all t Bols) = % for all s, For convenience

we shall set u =1, Ié%é%} = d(s) and 4, = d(s+k) . Then (2,3)

becomes

(2.1) Bo(s) = a(s) {ﬁ (= 132 () g e}



Theorem: he solution of (2.4) is

me (4 )k '
@) o) = 2 RIS agay G G IR

over all partitions

(B s eoeyn,) of k
such that

2. Y%=k Jl=<y<nm

Proof:
If r=0 Byls) = /g, If » =1 from (2.4)

(2,6) 8, (s) = 4, % (0 Ty

(Y

Now there 13 one and only one partition of J satlsfying the conditions
of (2.5), namely, j 1tselt, Therefore the coefficlent of E%T is

(- 1)3*2 dy( ?)) as desired and thus formula (2.5) gives the solution

if r=1 ., Ve proceed by induction, Assume that the theorem is true

for all moments up to r» -« 1 ., In particular

m(p-l) -1)ktrel r-1
Bag(s) =§; L= L S P

over all partitions

() suy55 oo, “r-l) of k
rel
such that ; Yy =k

and 1 <u; <m

m
ul
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@JJ‘w

Stnce B.(s) = a(s){ >~ («1)3-1®) 8 (s+1)} 1t 1s fairly clear th
r = ;;- 1) Bay 3 s fairly clear that

Bp(s) 13 given by our formula because the shift s + k —3> s + k + J

has many partitions, each of which comes from a Uy chosen from

l, ... , § sand another partition Upy eee 5 Wy, which 13 a partition of

k+ ] -u o The proper multiplier in each case 1s (2 ) or f% (2)
1 Yy 1=2 W

Thus, all we have done 1s to introduce new partitions of the numbers r to
mr the first of which is § .
In detail:

(2.7)
o -1 myBdE=l) (g lir-l dd,d, .4 o
Br(3)=§(']’)1 (?)%é—-—_,; L_s%ET-T' = %Y Y143 Qbu1"'“2+‘1 “f‘"*"paqﬁ

over all partitions

(ug 5000 suy 5) Of k

such that
r-l
u1=k 1_§u1< m

m_ m{r-l) _1)k+r-j r-l
= E% s¥k+] Z dodjdul-!- j"'du,l+u2~l-...4-\;,“‘_24,‘1(l“jl ) ;L‘; ( 3,

over all partitions

(v supseeesuy 3) of k
such that
r=l

2 y =k 1 <uy <mn



Let Y=k + 3§ , thenY varies from r to mr and our sum becomes

\ 4
= -

y=r

d.a. a4 'ﬁ" (%)
07u) "4 d“1+°"+“r-1 1= Y
over all partitions of y
such that

?:Euiax l.gui_fm

8s desired. In words, the ] of the first sum (2.7) becomes the first
element W of the partition of ¥ into r parts,

§ 3. The Ergodic Behavior of 708) .

Although the formulas are rather cumbersome we can dstermine the
first few moments of the limiting distribution and can use the standard
Tauberlian theory to obtain a general formula Br* the reth binomial
moment of the limiting distribution {Pk*ge tgmm PL 9(t) = k] (see

chapter IIfL). Since Br* exists it 1s given by Br* = lim sB.(s) .

s <»0
Hence

w185 (.1 Ie+pr
6 =3 T T e e e, T @)
all partitions
(4 yup,0e0my) of k
such that % Wy = k



€{x
whare bk = 'I:E§E} °

To illustrate the use of (3.1) we compute 82* for the case

where MH{x) is max 2,

4
R ~ai e I S R 6.6 m., o m
é—z - Uy w v, u,’ ( uz)

] B l_ .—}iw ( mlek 2 / o
o X :

‘ over all partitlona
(ul,ua) of k
~3uch that

yrupEE sy s

the partitions (ul,uz) of k=2 are W = 1, v, = i
" " " " k=3 " w=Eluy=2 yuy=2,y-=1
" n " " k=) " Wy =2, v, =2

-

therefore

Zy (2 2y .2 5. 2 2. 2.
) 2Tt TR TR %

L%Gl“ & %l

it

A

If Q) = A/A+3 » that is if the arrivals form s Polsson Process then

8, = A/k aad we obtain

‘ Eh°
Bz* = :\[-‘%)\-it\l = —Syp— as desired ,

Cf course Bl* =P/, where £ 1s mean "locking time" and « is mean service

time for general distributions,

References: Same as Chapter IIJ.
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Chapter IV : A related BatcheArrival Queusing problem and the deter-

mination of the mean time between consecutive registrations,

§'1 Introduction: So far we have concentrated our attention on the
random variable ‘Q(t) = the number of impulses present in the machiné

at tims t . Although the qusue size Qﬂt), is of fundamental imp.rte
ance in the theory of infinitely many server queues it 13 not usually

of primary Interest in the theory of psrticle counters. 'As we remarked
in the Introduction, the random variable central to the theory of
Counters 1s ths "time between successive registrations™ which we denoted
by R(x) .

In order to ascertain the mean of R(x) when the dead time has

a max-m distribution we introduce a new Stochastic Process which may
also be of ipterest In the theory of bulk queues. We shall assume that
particles arrive in batches of size m at the type II counter each
particle producing an exponentlially digtributed impulse independently of
the other particles, Let 8(t) be the numbsr of impulses present in
the counter in this new process, In reneral, &(t) 1is not equal to

‘7 (t), but 8(t) and q(t) will be zero simultaneously., Thus the
time between two arrivals finding the counter free (l1.e,, R(x)) will be
the same in both cases, We shall ses that 1t is relatively easy to

find the mean of R(x) 4n the &(t) process because we can utilize a

l-dimensional imbedded Markov Chailn,

§2. The General theory for the Bulk-Arrival Model

In this section we shall derive the recurrence equations for the

batch arrivel system where the particles arrive at the type II counter



ﬂ?6"'

(or customers at an infinitely many server queueing system) in batches
of size m according to a recurrent process. The interearrival
distribution P(x) 1s assumed to be non-lattice and positive., The
"dead time" produced by any particle (or service time of a customer)
1s assumed to have the positive distribution function H(x) . Let
tTnS be the sequence of arrival points of the groups of particles and
lat A be the dead time produced by a single particle., We assume that
P[’t’n T = x] = F(x) for all n and that the {v, - 4% are

mutually independent. Also the individual dead times producsd are

mutually independent and alsoc independent of the {'l‘n's system, Let &(t)

denote the number of impulses present in the counter at time t (equivalently
§(t) denotes the queus size at time t). For simplicity we assume

that §(0) = 0 and P[7} <x] = F(x), If we let P, (t) = P[8(t) = k] we

can derive an integral equation satisfied by

o0
Gle,2) = - F(e)s" .

Theorem 1: The generating function G(t,z) satisfies the following

Integral equation

t
(2,1) @&(t,z) = [1-P(t)] + J'o G(tex,z) [z + (1-z) H(t-x)]™aF(x)
Proof: By the theorem of total probability

(2.2) Py(t) = A - F(t)] 4-!2 (@ (t-x)] mPo(t-x) dr(x)

t Kk
(2.3) Py (t) =j° o ¢ T B [ - Bs-x)]d P (tx)eP(x)



therafore =37

o
(2.4) 6(t,s) = E P, (t)a¥

® k -
= [1-P(t)] +j§§ % (?)zktl-ﬂ(t-x):ljl:ﬁ(t-x)]m j.Pk_j(t-x)zk'JdF(x) .

Interchanging aummation ylelds

t
(62 =[ar o))+ | % g"’_o(’;)zi -rte-x]’ RG] p,_, (sm)sder o)

or
t

6(t,z) = O - F(t)] + jo G(t=x,z) (& + (1-z) H(t=x))" daF(x) q.e.d

If we differentiate G(t,z) and evaluate at 2z =1 then by

exactly the same method as used in chapter 2 in the section summarizing

Takacs® results we can prove:

Theorem 2: The binomial moments exist and can be obtained by the

recurrence formula.

= t !
(2.5) B (1) =20 () §, Begteem Remtem)]” apta)

Cor., The mean of the ergodic distribution 1s simply !-:-P where

. .
P = mean dead time = f xdH(x) < 00 and « = mean inter-arrival
0
o
time =J' xdP(x) < o0 o
0

£
Proof: As By(t) =1, B, (t) =J‘o{31(t-x) + m[-H(t-x)]} ap(x)
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thus taking Laplace transforms yields
B,(s) = B (s) €(s) + m €(s) L [1-H]

where L[1-H] is the Laplace transform of 1 - H(x) .

Hence f,(s) = m 1-—?%%3—,- L El - H| and by inversion
() * [ - H(t=x)] dm(x)
B = J) B - Hex] anlx

00
where m{x) = Fn(x) and Fn(x) denotes the n-fold convolution
n=0

of F(X) o

Applying Smith's renewal thsorem ylelds

(2.6) B "= 2F . q.e.d,

The major problem in using theorsem 2 for practlcal purpcses is
the presence of the J 1in the exponent of [1 - H(t-x)] in formula
(2.5). This difficulty will be high-lighted when we gpecialize to the
case of exponentlal dead times in the next section.

f 3. The Special Case of Exponential Dead Time and the Mean registration
time for the type II counter with Max-m dead time,

In this saction H(x) =1 - e™™ g0 that (2.5) becomes

t
(3.1 B0 = [ "?"_"6 (%) 3,_(6-x) o™ (bFap(a) |

-



Upon taking Laplace transforms we obtain the recurrence equation

for the Laplace transforms of the r-th binomial moments, Namely,

) o
(3,2) Ba(e) = (0L Zr (1) Oray (o)

It 1s to be noted that this ejquation will in general be an m~th order
difference equation with variable coefficlents and will be difficult
To solve unless m =1 ,

We now proceed to discuss the imbedded Markov Chain in the case
of exponentlial dead-time, We shall agaln see that the technical
difficulties in this approach are due to the fact that the m will
appear as an exponent in the integral equation determining the generating
function of the queuwe size at arrivals,

If we let 5 = G(Th -« 0) be the number of impulses present just
before the n-th batch arrives the sequence Lbn\ forms a Markov Chain
with transition probabilities

(3:3) P8, = k|8, =) = Py = f; (31m) o™WXK (1.¢"HX)I¥M-K gp(x)

If we can find one gplution ka3 to the system of equations
(3.) =
° P P
3.4 = ﬁ-ﬁ IPix
such that {Pk; is a probability distribution then by Foster's theorem

[2] the chain will be ergodic and iP&; will be its actual unique
limiting distribution, independent of initial conditions. Proceeding



00
as usual we introduce the generating functions U(z) = ;E szk « Since

o) o0 - e, 4100
P = """"_ij 5 (3;‘") o HXE [} | oHX] dF (x)

k

Multiplying by 2z~ and adding over k we obtaln

+m-k
U(z) = % 3‘2 gl’j (j;m) o bxk K (l-e“"'x)J dr(x) or

(3.5) U(z) = f: 1 - e+ zo"p‘x)m Ul - o FX 4+ ze"PX) aP(x)

o0
. =2 x
Recalling that B, = % (r) P, 1is also equal to

r
T.
%8 Q-lé-zl- and differentiating with respect to z »r times in
dz z=1

the given equation we conclude that the binomial moments of the limiting
dlstribution satisry the difference equation

-—m _ - . m
(346) B €lw) 2o G By s et 2o (T3

If we can solve (3,6) for the binomial moments then we can find the

P
probabllities {Pkl by Jordarfs inversion formula., In particular O/.(
i1s the mean recurrence time of the time between batches arriving and

finding the counter free (or all servers free in the case of the



a}_ 6'1 %)

P
infinitely many server queue). However, this o/-c is also the mean time
between successive registrations in the /z(t) process as al(t) =0 ire,
8(t) = 0., This is, of course, the reason we considered the batch

arrival problem,

Notice that if we again set pu =1 'PJ = @(jw) dj = %

(3.,6) becomes

(3.7) By = 4, {?__'I" (3184} if rzm

- (3.7) B, = d, {?:I ( ] ) B!,__JS ifr>m

i
8

and Bl T:?l-

4
2
B, = ﬁ%— [ e+ (31

Theorem 3: The general solution to (3.7) is given by

4 'ﬁ' (%)
. Sugruy 0 Gty gy
all ordered partitions of r

(308) Br = Z

1nt0 P,P-l,...,l partso

1.0, for each k < r consider

k
partitions (“ll’ooo’uk)}o -%-: ui =r
1l < wy <mn



proof: By definition By =1 . By = md, which 1s also given by our
formula since there is only one partition of 1 namely Wy = 1.
For B2 there are exactly two partltions of two (1,1) and (2) so

our formula ylelds

( ? )zdldz + g )d, agrecing with a "brute

force" computation. The general proof 1s by induction. Suppose the

theorem is true for all r <r -1 we must show it is true for B, .

I
If r<m B, = dl_{g( PRI

therefore

r
B_=4d (B)(>Z a,a eee @ T2
r r%, J B B Uptesetuy g Wy
: of 8ll ordered partitions
of re) into k parts k = 1,2,...,r~]

k
such that ;E Uy =r - J

l<y =n

ke
= ™
z 1=1( 'ui)dll]'d“l"'u-z s0co d‘11+..°+‘1k

all ordered partitions

of r Into k parts k =1,,..,r
K

‘;E;ﬁi = p



where the empty bracket is to be read as one. Notice that the ( ? )

term is just the last part of the partition of r into k parts 1.e.,
W =J and thus we see that the proof if » <m 1s complete. The
proof for r >m is similar., As the formula (3.8) is true for

r=m by the previous Iﬁroof we agaln use induction,

B, = r{%(?mr-jg if r2m

sd, S(T) ST (™ e, d a
r P ] " g% Fugruy ot Guge by

all ordered partitions
of r-j Into k parts

k = 1,.-., I‘-j Such that
k

Zuir-ruj <y <n

since the ( ? ) term again becomes tho last part j of the total partition
of r and combines with all partitions of r - j to give a partition of
r into k + 1 parts., Note that for some k, especially small ones,
there may be no relevant partitions as the partition of r may have

ui' 8 >m and (!lnl) =0 |{if Y, >m . Actually it is not surprising
1

that (3,7) and(3.7') have the same solution as they are identical if we
make the convention that Bg=0 if k>u,

We now are in position to give the formula for the mean of R(x).
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Theoren L4: The mean time between successive registrations in the type II

Particles Counter where the arrivals form a recurrent process 1l.e.
PR -1, Sx)=F(x) «= jz xdF(x) < oo and the impulse times

are max-m distributed is

A
 Jul where
0

2 T
Po = rzzé ("1) BI'

where the B sre given by (3.8) .

Proof: By the fundamental theorem of recurrent events applied to
Markov Chains the mean number of steps in the chain before a return

to Eo starting from Eo is %/po » However the length of time between

successive steps of the chain is distributed as F(x) . If we regard

the R(x) distribution %o be the sum of N F(x)'s where N = the
number of steps in the chain (or number particles that arrive) until
an arriving particle finds the counter free we can apply Wald's

Fundamental Tdentity tc conclude that

00
E(R) = —;6 as « = 5; xdF(x) < oo .

Notice that the event {N = n} depends only on the first n-1 F(x)
variables and thus the use of Wald's identity 1ls justified. q.0.4

(3.9) Since P, = (-l)rBr

’g,)l\as

r
and as Br‘§~%3 for some constant C the serles for Po converges.,
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The usefulness of our approach depends on the rapidity of the convergence,
not just because we want to add up as few terms as possible but alao
because the Br's are difficult and tedious to compute for large r.
Nevertheless, by the introduction of an auxilliary stochastic process,

we have been able t¢ give a precise formula "/Po for the mean time

between successive reglstrations,

One standard device used in particle counting is a scaling
circult which lets only every r-th particle through to the counter,
This, mathematically speaking, transforms the usual Poisson input into

Erlang-r input. In this éase

as) = pH8 = Kave)®

1-(Ma+3)T

and Boal

B, = mg’\ﬂﬂ)r

1-(AA )T

B =2 g’*@m" . Mas2)” s (D) (Aa+2)T
2 1« (MA+1)T 1-(Ap+2)T 2 1-(A/A+2)T

e -— ~ l
If A=p=1 m=2 p~6, then B, < 555 -

The usefulness of (3.9) therefore depends on the relative sizes
of m and r ., In order to approximate a true dead time distribution

a large m will be needed as
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the mean of a maxem distribution 1s

|

the variance" " n "

o

/42

and most dead time distributions will be "almost constant™ and thus

the mean must be much larger than the varlance,

§ 4. Using the 7(t) Process to Investigate the 8(t) process when

arrivals are Poisson

So far we have simply used the "batch arrivals" process as a
tool to determine the mean time between consecutive registrations for
the type II counter wlth genersl input and max-m impulse time. The
present sectlon is devoted tc a minor reversal of this procedure,

Suppose we really were interested in the infinitely many server
queueing process where arrivals obey a Polsgson law with parameter A N
service time 1s exponentlal with parameter p and the arrivgls are in
batches of m . The standard approach Eﬂ ylelds the following set

of difference equatlons for the limiting distribution of the queue

8ize,
iIf k<m-1 ( + LpPy = (A+ k)P,
if x>m {k + 1)uP kil = (N +u) - Py

The usual method 1s to solve these equations in terms of Po

and then normalize using the condition EZ P =1 , In our case
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it 1s difficult to obtain the general solution but PO is knoun
to be equal to e~ A$ where .= mean of the max-m distribution,
The Justificlation for this assertion ias that 1f we consider the
two processes in operation simultaneously we are in O 1in the §
process if and only if we are 1in state O of the 9 process

G/max m/c0 . By Takécs' result [1] P, = o ?f

. In fact, Takfics
shows that the limiting queue size for an infinitely many server
queue with Poisson arrivals and general service distribution H(x)

is Poisson with parameter P = r xdH(x) < 00 ,
0
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Chapter ¥s Attempts to Determins the Variance of the

"Time between Consecutive Registrations,”

5’1u Introduction:

J
In order to obtain the asymptotic distribution of »% ’
the number of registered particles at time t , we need not only
the mean of R(x) but also the variance of R(x). Although we have
not been able to obtain a formula for the varlance of R(x), we can
glve an approximation to the variance for Erlang-r inter-arrival
distributions if r 1s largs.
Despite the fact that we were unsueccessful in our attempt
to discover the variance of R{x} . it is informative to review the
approachcg used and to see the difficulties involved. The first
method uses Wald's Fundamental Identlty. Let us consider the ) Prow
cess, When the first batch of arrivals comes we keep on sampling
from the inter-arrival distribution until an arriving batch finds
the counter free. If N = the number of arrivals betwssn the ragist-
rations including the 2nd registered particle [}.e. N = n means that
after reglstration 1, n-l particles wsere not counted but the n-th
waé], then N = the recurrence time of the state E; of the imbedded
chair {§ ¢t . If © stands for the inter-arrival distribution and

SN = 91 + 92 + .00 * 8y then Sy has the distribution R(x). We

uged this idea previously in showing that
E(R) = /P, as E(8) =« and E(N) = 1/p0 .

Assuming that both N and @ have finlte second moments we can differ-



entlate Wald's Identity [ses Harris [1] ] and obtain the following
formula for E[&N?] :

B[s,7] = 2B(NS,)E(0} - E[i%1EZ(6) + E(NIV(0)

The main difficulty snccuntered -In this spproach is the dztermination

of E(NSN) . Ths quantity E(NZ) 1s also hard to compute; nevertheless,

. 2.
wa can give a formula for GZ(N) and thus for E(N ) , Hecause

UZ(N) 13 very complicated this method will not be of practical
use ever. if we could solve for EEﬁSﬁ]o It 3s of interest to realize
that the random varlsble N can be defined to be the mmber of steps

between successive transitions E, «»E  In the chaln - {&.} -

In the second part of the chapter we outline an approach
using integral cequations, also developed by Takacs., Unrortunately,

this sscond apﬁroach ylelds lass than the first,

§2° An Approach via Wald's Fundamental Identity and Recurrent

Bvents,

A3 already indicated, the present approach 1s an attempt to

compute the second moment of R(x) by uss of the formula
(2.1) E[?] = E[5;°] = 28I ]E(e) - B[NAEZ(6) + E(N) V(o)

We shall first determine o=(N) = E(N%) = EZ(N) , the variance of
the number of steps between consecutive transitions Eo dpEm in the



imbedded chain {5n§ .

Recall that py, = j": (11:,_”')¢§°""kx (1 - o~FX)I*m=Kap(z) ,

Let iPk(n)} be the distribution of the number of impulses pressnt
in the &8 process just before the neth arrival. Starting from
the initial distribution {pk“’g the distributions {Pk‘n)s can
be determined recursively by the formnlas.

00

(n+1) , == (n)
(2.1) P = Iy = 1,243, eeo
" Fs m Py S n 3

Consider the binomlial moments of the distribution of the queue size

at the nath step
(2.2) p (o) =g {(6“)§ = "“%w & e, (0
° r r — 'r’ "k °
Using the elementary result that the binomliel moments of the

Binomial (Bernoulli) distribution Q, = (;:)pk(l-p)n'k sre just

= (Mt .
B, = (r)p We can prove:

Theoremn: Bo(n) =1 n=1,2, ... and
(n+1) = m (n) (n) _
(2.3) B, =¢, g (% "By where B ' =0 ifv>o0.

Proof: If we let Gn bl Thal » 88 usual, then conditional wupon
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6, =x and O, =§

e}
[ n;l}l B, = 3,0, = x] = (J;m)e rpx

becsuse under the given conditions 6:&1 i1s just a Binomisl varilable

with parameters j +m and e ™ thus

5, ® .
0O ey = 5 = (9™ f ot = (™, .

Q0 o0
Br(m-l) = %PJ(D)(J;IH)(?S - @r % (j;m)Pj(n)
= 'm j
as (33 2 Gl G

Br(n+1). = @ é (@) { % (rgk)Pj (n)}

(n+l) _ <= (n)
B, ™ = @ E(ﬁ) Bage o q.0.d.

If n~3»o00 and Br*:-. 1im Br(n) then the Br"’ satisfy
n-y ¢o

squations previously derived for the ergodic distribtution (see Chapter

(1) r=11,2, ... the binomial

IV equation (3.6)). Starting from B,
moments of the number of lmpulses present at the first arrival we can
use (2,3) to obtain the binomiasl moments of the number of impulses

present just bofore the n~th arrival (remember we are working with the

8(t) process) . If 8(0) =31 and 'l'l =X , 8, has a Bernculli



distribution with parameters 1 and o' and thus:

.8
(2.1) Br“')*,i(r]) =theg, =r=01,2, ..

We proceed to determine the generating function for the r-th
00

binomial moment of {6,3. Let B, (w) = 2; Br(n)wn .
n=

Lerma: Suppose 6(0) = 1 then the Br(w) satiafy the difference

equation:
w% 1 o 14 )}
2:5) B0 = xE { 9+ 2 G0}

Proof:

(n+1) = (n)
Br " = Qr %‘ﬁmr-kn e

Multiplying by w(nﬂ') and summing over n we obtain
00 00 m
(n+l) n+1 m (n)
B W w B W

or
i - R m
Blw) - (2)@¥ = qu > (B, 00 .

hence
W m
Br(w) = T;fr—q [(:;) + E (tﬁ)Br_k(w)] q.8.d,

For the practical purpose of particle counting theory we
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we may assume that initially we are in state Eo i.e. 8(0) =0,

Thus the equations to be solved are

B
(2.6) B, (w) = 4,(n) ér(k)ar,km}

Bolw) = vz

Wt d_{(u) = & . and d.(W) = =t
nere T - m;' O 1 oW °

Theorem: The solutions of the equations (2,6) for the determination
of the generating functions of the transient behavior of the binomial

moments of {663 are given by:

(2.7)
k
B,(w) = = ;lg(ﬁi)do(W)dﬁ(W)d‘ﬁ*'uz(w) coe %1*'”*'“!,:(“)

all ordered partitions (up,...,u,)
of » into k parts, k= 1l,..., T
k

such that f: uy =r and 1l <u <mn

The proof is omitted as 1t 1s exactly the same as the one given for
the imbedded chain except that d,, 1s now replaced by dr(w) » This

accounts for the presence of do(w) = I%E in the formula (2,.7) .

As By=1,d;=1 and so do failed to appear in (3.8) of chapter 1V ,

Since Br(w) is analytiec in a neighborhood of the origin,



Polw) = ;zi' Po(n)tf‘ = ;;‘; (-1)° B,(w) will also be analytic

in a neilghborhood of the origin, In theory, therefore, we can use

Cauchy's integral formula for derivatives to determine the

{Po(njg n= 1,2, oo o Let us again consider tha* ewvavry step in

the chain 1s one trial in a recurrsent event scheme where the recurrent
event £ 1s "we are in state 0O at the n-th trial"™ (or step of

the chain) . The rendom variable N which equals the number of trials
between successive occurrences of £ and which equals the number of

steps between consecutive transitions Ey = Em In the chain {Gn}

is, of course, the object of our discussion. We already know that
E(N) = 1/Po . By a problem in Feller's text [2] we can also

e
determine the variance of I , Specifically

P N) - /e, + (L/p,)2
(2.8) == (.M _py = 0 0
< o 0 2(/py)°

where P, 13 the Py of the ergodic distribution and is given in
section 3 of Chapter IN . Another expression for the right side of
(2.8) 1is

2 1 1, .2
(2.9) = 1m S (. L p )R
2(*/py)° e 2l o

-] ..}
- ‘];;ml {r% (-1)F B,(w) - (rzgc (-l)rB,)I%;}
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Unfortunately, the determination of @2(N) in this manner

requires far more computation than the determination of Po because

o2(N) depends on the sum i (Po(n) - Pg) o Also even if Po(n)
n=s

is "close to" P, many terms will be needed to assure that

(n) (n)

00
~ Py) 1s close to gi (Bg ~ Py).  In theory, never-

S

Zr o
theless, we have determined both the mean and variance of the
recurrence time of the O-~state in the imbedded Markov Chain of the
6(t) process. Although we were able to deduce that the mean time
between successive regiatrations In both the 8(t) and the 'q(t)
processes 1s equal to ‘/Po s, We have been unable to discover an
expression for the variance of the "time between successive regist-
rations." The difficulty arises from the facu that Wald's
Fundamental Identity of Sequential Analysis yields aﬁ intractable
expreasion for the second moment of the sum of a random number of
random variables when the number chosen depends on a sequential

stopping rule. Under suitable conditions (see Harris [i]) we have
(2.10)  E[5,%] = 2B(Nsp)E(8) - E(WDIEZ(8) + E(NIV(e)

where N = the number of random varisbles en » a1l of which are
independent and identically distributed as F(x), chosen. The

term E(NSN) 1s well known to be the "troublemaker."

In an important special case we can, however, approximate E(NSN) N



Suppose we have a type II counter with max-m impulse time distribution
and we are counting particles arriving according to a Poisson Process.
If the particles pass through a scalar which leta only every r-th
particle through then the input to the counter i1s an Erlang-r process.
If r 1s large it will almost be a constant, ~Thus- <z now calculate

E'(NSN) if the inter-arrival distribution is a constent.,

Lerma: If the input process is a constant i.e. the time between

consecutive arrivals i1s « > 0, Then

(2.11) Efis,] = 0P« .

Proof: Under the hypotheses of the lemma P_[W=n] = P [ = n ,Snén-(] thus

B0iSy) = T al4n)®, (5 = n,Sy = nd
n=

o)
=S nl« P.(W=n) = <E(N?)
n=l

When the arrivals have an Erlang-r inter-arrival distribution,
therefore, we suggest approximating E(NSN) by xE(N‘?) in equation
(2.10), As E(8) = r/,\ =4 and V(®) = P{z as © 4is now Erlang-r
we obtain from (2,10)

Var(sy) = E[s3] - B2[3,] = 2« (")E(2) - B(N)EZ(9)

+ E(NV(2) - B2(5y)

2
= Re B0 + 20%) 4 28%) + 5 Fy - (/pp)°



Thus if V(8) = ’42 is small (thus how large »r must be for
this approximation to be used depende on I\ ) we can say that
approximately 6'2(3) , the varlance of the time between consecutive

registrations 1s:

2
(2.12) 2R = Lpol) + g By
A o A
Since the times {'Yn'i of reglstrations of a particle form
4 ?

a recurrent process, with P{T .. =T <x} =R(x) and if we
denote by Vt » the number of registrations by time t then
Feller's Central Limit theorem for recurrent events (theorem 3 of
chapter I) asserts that if o‘z(R) < 00 then the distribution of
V*.; 1s asymptotically normal l.e,

t 2
(2,13) lim P B ole = x} = L j"x o /2 au
t~> 00 ‘/ Et Vor <&
uz

Z

where u = E(R) & =o‘2(ﬂ)o

Applying this result to the type II counter with Erlange-r inter-
arrival times and maxem dead time distributions the number )/t of
reglstrations by time t has approzimately the asymptotic normal

distribution with parametera,
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In the paragraph above we have blithely written %/Po and
6%(N) . It must be remembered that even in the cass of Erlang-r

input they are not at all easy to compute,

§ 2. The registration time Distribution in the Case of Constant

Inter-~arrival times,

So far we have devoted our attention to the case whers
F(x) 1is non-lattice. In considering the variance of the time
between successive reglstrations for Erlange-r input, we used constant
arrivals to approximate Erlang-r Iinput and were able to obtain an
approximation for ¢2(R) and thus give an approximation for the
asymptotic distribution of the number of registrations. Wwhen the
Inter-arrival distributions is constant («) it 1s easy to derive the
exact distribution of the time R between successive registrations.
Ye shall agaln work with the & process, the arriving particle
produces m independent exponentially distributed (parameter p)

impulses.

Theorem: PR = k] = o =K > (et )
RPN N

all (jl ses e e ’Jk)
such that jl <mr §y 4+ 32 < 2m

one jl + s +jk"1 < (k-l)m

and jl +..,+jk = Im



Proof: In order that the k-th arriving particle after a regist-
ration be the first one registered there must be at least one
impulse present at the times when particles 1,2,..., k=l arrive.
Therefore, at time « no more than (mel) of the original impulses
can have ended 1.e. 31 impulses can expire by time &« where

Jy = 0,1,..c, m-1 but not m . In the next time interval («, 2@]
32 impulsas and but if the second arrival 13 not to be registersd
j2 <mej; +m or j; +J,<2m. Simllarly we see that in the
i-th (i<k) interval of length x,[]i-l)*,i{L J; impulses and

Ji satisfies jl + 32 + ooee * Ji < im ., Finally if the k-th
particle 1s the first to be registered, Jk = the number of impulses
expiring in [(k-1)«, k<] 1s equal to Je=km =~ (Jy *ooot Iy q) o

Therefore:

]
PR = kil = 3 Qie'“" L 1)1

all (§y5ees,3y) such that
Jg <my §y ¥ dp < 2Myese,y Jpteeot Sy < (kellm
jl + 060 + Jk = Jm

Iz
= o”EH (uu) L ca.d,
cem = e

all (Jl,...,jk) such that
J1 SMyeen, Jy Feoot g < (k=1)m
I Feeot Jp = lkm
To the best of the author's knowledge there is no known closed

form for this sum,
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Chapter 5B: The Integral Equation Approach

Although we have been able to obtain the mean of the "time
between successive registrations" assuming that the impulse time
obeyed a max-m law, we could not obtain the varlance since 1t
depends on E[NSN] . In 1957, Professor Takdcs suggested a nsw
spproach which leads to integral equations for the mean and
variance of the times between consecutive registrations; conditional
on the impulse time produced by the previous registrant. After
sumnarizing Takfcs methods we solve the integral equations for
a mai-a distribution., The sltuation, even for maxe<?2 dead time

is surprisingly complicated.

§2o A Surmary of Tak@cs' Results

We assume, as usual, that particles arrive at a counter

at times T, Tys Tps oe« 3 each one produces an impulse of
duration {X3 where P{1 < x} = H(x) and the {A} are
l1dentically distributed and independent of one anothsr and of the
{’[“ns sequence. Ue denote the subsequence of {t'n'g n=0,1,2,..,
of those particles actually registered by {_’Cn'g n=0,1, coo o
When the times {_’t'n - n-lx n=1,2, ... between successive
arrivals are identically distributed as F(x) then the time
differences {’t‘; - 't;,:i's between successive registrations will
also be identically dlstributed random variables say R(x) . If

we let

b = }:m(x) o2 = ?: (i) 247 (x)



then our objective is to find

(2,1) R R AN TS

2 _ 2R ' o 2
(2.2) B® =Dt - T 4] = jo (x-A)“aR(x)

Once we've found A and B2 we can spply Feller's Central Limit
theorem of renewal theory to derive the asymptotic distridbution of
)@ = the rumber of regilstrations occurring in the time interval

(0,t], provided of course, that A and Bz are finite, To

determine A and B2 we introduce the following conditional expecte
ations.
]
(2.3) A(y) = n[ty 1%, = y]
\J
(2.1) B2(y) = D2[1] 1%, = ¥l

Knowing these, by the theorem of total expectation we have

Q©
(2.5) A= I A(y)aH(y)
0
and
Q0 [o.e]
(2.6) B2 = | B2(y)an(y) + [ - A}%an(y)
0 0

As the length of time between time O (when the event To
occurs) and the time that the next particle comes and produces

an impulse is distributed as F(x) we have

(2,7) Cly) = M[Iil XO =y]l =p

(2.8) p?(y) = D[ |%y = y] =e? .



|
Theorem: The conditional expectation A(y) = M[’l’l |%, = y] can
be determined with the aid of the following integral equation:

y y 00
(2.9) Aly) =§0 A(y-x)E(y-x)dF(x) + [J‘x A(z)dH(z)]aF(x) + C(y)

Proof':

We have

Mfl’;_l’rl =Ty = x,7‘b = y,xl = g] =(x + A(yex) 1f O < z < y~x abd O<x<
x + A(z) 4f y-x < 2z <oo and O<x<y

X Ify<x<o

end {2.9) follows by the theorsm of total expectation.

Theorem: The conditional variance Be(y) = Dzﬂpi IXO = y] can be
determined from the integral equations;

00
(2,100 B2(y) =[ BR(y-m)R(yem)ar(x) +|  [[* BP(z)an(z)]ar(x)
0 0 y-x

+f] bt (y-m)] (g -x)aP () +§Z[j‘”[x + A(z)]2aR(z)]aF (x) + D2(y) .
Y-x

Proof': Ve have

2

BS(yex) 1f 0 <z <y-xand 0 <x <y

D[y 1ty = %o = Ay =y y=a) =) ,
B(z) if yex <2 <0 and 0 <x <y

o) Ify<x <o,

and the result again follows by the theorem of total expectation.



It should be recognized that equations (2.9) and (2.10) are

of the same type, since once we've solved (2,9) we can let
(-
r(y) ==IZ x + A(yex)]aﬁ(y-x)dl?(x) +j'(y){ [x+A(z)szH(z)}dF(x) + Dz(y)
' -X

for this will aimply s a function of 7y .

Thern
v oY ot
B (y) =j BZ (y=x ) H(ywx)dF (x) +| {f R
4] 0 FeX

n

{z)afa(z)]aF(x) + My
which is identlcal in form with (2.9).

§35 The application of ths method to gpecial desd time distributions,

In this section we shall hreat the case of exponentislly
distributed dead time In full detail, Then we proceced to formulate
the problem for max-m impulse times and solve the resulting equations
if m=2 . Finally we show how the Erlang-2 case leads to a still

more ccmpiicated aquation,

Example: H(x) = 1. P

We let l’.(.g.)... = YZ e"Va(y)ay Ms) = f.: e~ 3Yac(y)



Equation /2.9) becomes

. oy ¢® . \
(3.1) &(y) =ﬁA(y-x)H(y-x)dF(x) + C(y) + Jo :}r-x A(z)dd(z)dF (x)

Taking Larlace transforms wo obtain

ee oooWa¥lst | Ms) WGra) o, Oley ) wsivw ) ovimons
8 4 8 S+ 3 g =1 8-
oy

(3.2) W (g) = ~MUs )W (g+p) + N(sIWs) + W) Ne) + P(e)

ard Cinally

wr el
(3030 Wisead = We) + el o Loflel wrg

1) fd
By successivs epplications of this formule we can express Il"’.S'PI’lLL) in

terrs ¢f W(s! and Wluw). This leeds to
» . LY s I-Q +n'

(3.1) Wi (np) = Wip) » fgtmel [ lefema) gy,
, - Watnp ). s 1= .st +ny.)

If wa ot 4 = Wlp) + }TGT‘!WJ" B, & Ty

this simphifies to the recursion relatiocn:

(2,5) Y(is + (n+l)p) = 4, = wy W(s+ny)



The penoral solution to (3,5) ir

(3060 Win{niddy) = 4+ (1) s¥is) + 55 a, (-1
SR SRR Rt LA D n n “pal vee Woiis aégon““'mi (A

A

Preofs XTI n =1 the formula (3.6) satizfios (3.%) . Lssume RUEES IS
rory Ty (.00 0 ko= 3 Ve rneov show  Ygrlneiin) e
SERLFE R G T I B » o L Loyens 510, @8 NCE SOV VARl j g L3
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(3.7) Vi) = 2 (-0 0¥ « B (j‘llo Haslu u))
If we set 3 = ¢ ws find that

(3.8) Wi = é';u.l\‘i"l"'iu? }iﬁ%
R

Thus A(y) can be determined by inversion of (3.7). It is of

interest +to note that
m -
(3,9) A= j; Ay we™Way = W) .

he conditional variance Bz(y) may llkewlse be determined by

Laplace-Stieltjes transforms.
.-!-l;- Jm ajx
Example 2: H(x) = (=1) (j) o H
i:o

The equation to be solved is

Y y 00
(3:10) Aly) = Alym)my-m)ar (x)soty) + [ J Alz)aH(z)aP(x)
X
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Forming Laplace-Stieltjes tranaforms we obtain:

(3.11) We) Bofall - Hel -1)5(’;) [ Wissaw)- Wign))

If m =2 the sbove equation becomes

Wis+iop) = Y (a+p) +"~lf(s)ab s Wion) - 2Wp) + L

wh - 1-.ﬂ.§ +%) EE§ +lég)
ere wk = :+ N = :+ L

Theorem:
sum of products of exactly k}

.1
(3012) W(S“'nu) = (8+p.)[ 2n-1-2k {tems from wl seoe ’wnwz chosen
=0 such that no two adjacent
wi's are taken

Ln n| {sums of producta of exactly k
2 -

terms from @, ;... Wy chosen
¢ Ws) I ek 15 Wn2

= such that W, 1s always present

k-tuples from w 2,,” ,w -2 such

+ [Wiep) - 2¥will (22La1) + g that the coefficient of the Letuple
beglnning with &, r > 2 is
2!1-21{—1 E"" ( % )1“1]

n=2
- %——;H C,.q(3+1)
[%] all k-tuples from @,,... .0, , such
where cn(s) = E 2n-2k that no two adjacent a)i's are chosen,
form products and add,



This result is again proved by induction. The inductive argument
is omitted as this approach is evidently hopeless and we did not
pursue 1t further.

The reader may find it interesting that the corresponding
equations for Erlang-r dead time distributions are still harder to
handle than the ones for max.m impulse time,

v‘.

l-ﬁ“—‘ j
Example 3: H(x) =1 - P (ux)

the basic equation {2,.9)

y o0
Aly) = 50 Algex)H(y=x)aP(x) + Cly) + SZ J A(z)d(z)dF (x)
“x

now becomes

Dol .
(3.13) Aly) = SzA(y-—x) G- > o~k (7=2) il-’%il‘— aF(x) + C(y)

y 2T 1e Nz
+ SO )Sm A(z} —T-T)T——dzdF(x)

Talking Laplace transforms, recalling that

00
fUs) = Jo e~ %%gP (x) W(a) = T: e~ Vaa(y)

and that (s) = f:e'sydc(y)



we obtain

W) . Q) [ M) | 52 (,%z_ Wstw) 7 o p(s)

s+u

) f uF Tl gmet (}1«3);‘ (ap) ™t Y(m):]}
e gaF-1\ 8 Szp 3] r-l
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él;. Some Final Corments.

From the practical point of view we have not succeeded in
obtsining useful formulas, however, we have glven a situation where
Erlang dilstributions are definitely not to be used. A further
interesting observation is that the max-m distribution ls the sum
2 m exponentisl distributions with parametera m, (Mel)y0000 B o
Thus a distribution which is ths sum of non-identically distributed
random varlables was easler To handle then the Erlang-distribution,
the sum of identically distributed random variables even In the
integral equation approach. The reason for the success of the
Erlang-distribution in the theory of the 3lngle server queue 13 that

¥ of service (or arrival) because

ve can kesp track of the "phase
the customers are served in order. Thug the the bshavior of Ek/G/l

can be deducsd from that o the single server queuve with Polsgson

input and general service time whore the service is in batches of
size k, In the iInfinltely many acrver queus the order of the arrivals
i1s of no help to us as service begins on arrival and the second arrival
may well finlsh his servics while the first 1sstill in the queue.

From the stand point of trying to reduce the general problem to one

of bulk arrivals the max-m dlstridbutions would seem to be the
distributions to use, As we have seen, unfortunately, they do not

simplify the problem enough. We hope to have some more to say about

these problems at some future data.



Chapter 6. A Loss Function for an elementary

misslile defense system.

In a talk presented at Columble in May 1961. Professor M o HJirsc:

dlscuassed the problem of defending an island againsi an aly attiick
with a one missile batbtery. He noted that the syatem has an

“whgorbing sbate” in the gsense that if an attaciting nlare fg vol

ot
-
o]
3

speyed by Bhe missils be y aftor tine b5 . do will no divec i
over the base and will attempt Lo destrov the base

In this note we shall discuss tho problem of daterminise 4l
longth of time until ebsorptisn (the base is desiroyed) ouiwv:s
ascuming that:

1) %the planes srrive according to a recucrent process. i.e.. b=

inter-arrival times Tﬁ+l - T} are independent, ldentlcsll
distributed pozitive random va-iablcocz, ”[ nv n < wwiom Y amn

2) The %iwe it iskes the missile battery to shoot ¢ nicne Ao iz

L pOSiGive rairdua veriable Hix) ., I X denotes the %“ime %% talisa

£
- fol8)
0 shoot down fthe neth plane then Pfin = xj = H(x} anz {%n}rwl Hie

mutually indeperdziit and indevendent ol the {Thg sequence., Ye

differ frorm the usual queueing model in that we now asazume thetb

P[> 65l =1 « H(ty) =P >0 where ty s the time ws have to shoot
the plane before 14 1s in poalilon to ds3troy the base.

3) Ue assume that wa have nfinit ely many guns at the base bui e

use only one gua on each plans. Howevar, we always have a gun



-

This approach is just that of taking a random number of random
variables. The number N 1is given by a geometric distribution.
This N denotes how many rendom variables e, = Th - T;-l are

chosen. (see Feller | 11).
f2. A slightly generalized Model

In the puovious section we assumed that once the gervice time
{(total tims ussd to shoot the plane) reached ty the plane destroyed
the base. This corresvonds in reality to perfoct accuracy of ths
combardier. Therefore we now assume that when the plane 1s over the
base a bomb is dropped and witb probability C > 0 it destroys
the base. 1In order to determine G(x) 4in this case we simply
radafine p %o equal [1 - H(to)]C which now gives the probabllity

that the neth plans dastroys the systsm,

o ¢t - H(sy)] o~%%
Th . o3 su(x) = =
Theorem 2: jo 1 - 08(s) [1-H(t,)]

<
")0

§3° A decislon theoretic criteria for eofficienc

In statistlcs one eriteria for deciding upon a good estimate

is to chooss 2 loss function (usually squared error L(5,8) = (G(x)-e)z)

and using that estimate minimizing the expected loss, Unfortunately

in nost qusueing problems 1t 1s very difficult to calculate these
expected lcsses, MHowever, for our model it i3 easy. A fairly realistiec
loss function wonld be of the form T. = Loss = kN t+ p{t) where k

would be a constant such as cost per plane and p(t) would be a

polynonial in t(time).
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But then
E(L) = kE(N) + E(p(t)
s% + E(p(%))

 =100]

fi

But from the fact that S’o e 3% (x)

we ¢an caleulate all tho moments of the rendom variable ¢ thus

can calcuiate E(p(t)). For instance if p(t) =

E(6) 15 2 3 L= kN+t
<] -—-2-—-—— an¢ thus if =

t
®(L) 3kp+ §OP+ q o
P

It i3 easily seen that the i~th momenta of G(x) depend only on

Py bty a&nd the first k moments of F(x) . Thus if all moments of

F(x) exist so do all the moments of G(x),
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